

VSMCOLLEGEOFENGINEERING AUTONOMOUS

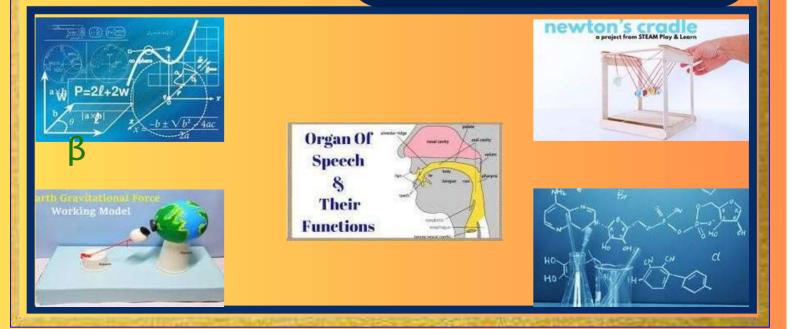
AccreditedbyNAACwith'A'Grade-3.23/4.00CGPA (ApprovedbyAICTE,NewDelhiandPermanentlyaffiliatedtoJNTUK,Kakinada)Recognised der2(f)and12(B)ofUGC,CertifiedbyISO9001:2015 Sponsored by The Ramchandrapuram Education Society (Estd. 1965)

Department of

ELECTRICAL ELECTRONIC ENGINEERING

NUMERICAL METHODS AND COMPLEX VARIABLES

SUBJECTMATERIAL


YEAR:II SEMESTER: I

Regulaton:VR23

SubjectCode:VR2321003

Preparedby

MS.D. DURGA DEVI Assistant Professor MATHS Department

AccreditedbyNAACwith'A'Grade-3.23/4.00CGPA (ApprovedbyAICTE,NewDelhiandPermanentlyaffiliatedtoJNTUK,Kakinada)Recogni sedunder2(f)and12(B)ofUGC,CertifiedbyISO9001:2015 Sponsored by The Ramchandrapuram EducationSociety(Estd.1965)

Department of electrical electronic engineering **Subject Material** NUMERICAL METHODS AND COMPLEX VARIABLES

(only for Electrical electronic Engineering)

II B.TECH ISEM

Regulation: VR23 SubjectCode:VR2321003

VSM COLLEGEOFENGINEERING Ramachandrapuram-533255

COMPLEX VARIABLES & NUMERICAL METHODS

Course Objectives:

- To elucidate the different numerical methods to solve nonlinear algebraic equations.
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To familiarize the complex variables
- To equip the students to solve application problems in their disciplines.

Course Outcomes:

1. Evaluate the approximate roots of polynomial and transcendental equations by different algorithms. Apply newton's forward& backword interpolation and Lagrange's formulae for equal and unequal intervals (L3)

2. Apply numerical integral techniques to different engineering problems .Apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

3. Apply Cauchy-Riemann equations to complex functions in order to determine whether a given continuous function is analytic (L3)

4. Evaluate the Taylor and Laurent expansions of simple functions, determining the nature of the singularities and calculating residu theorem make use of the cauchy residue theorem to evaluate certain integrals (L3)

5. Explain properties of various types of conformal mapping

UNIT – I:

Iterative Methods:

Introduction – Solutions of algebraic and transcendental equations: Bisection method – Secant method – Method of false position – General Iteration method – Newton-Raphson method (Simultaneous Equations) Interpolation:Newton's forward and backward formulae for interpolation – with unequal intervals – Lagrange's interpolation formula

UNIT – II:

Numerical integration, Solution of ordinary differential equations with initial conditions:

Trapezoidal rule– Simpson's 1/3rd and 3/8th rule– Solution of initial value problems by Taylor's series– Picard's method of successive approximations– Euler's method –Runge- Kutta method (second and fourth order) – Milne's Predictor and Corrector Method

UNIT – III:

Functions of a complex variable and Complex integration:

Introduction – Continuity – Differentiability – Analyticity –Cauchy-Riemann equations in Cartesian and polar coordinates – Harmonicand conjugate harmonic functions – Milne – Thompson method.

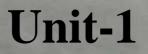
Complex integration: Line integral – Cauchy's integral theorem – Cauchy's integral formula – Generalized integral formula (all without proofs) and problems on above theorems.

UNIT – IV:

Series expansions and Residue Theorem:

Radius of convergence – Expansion of function in Taylor's series, Maclaurin's series andLaurent series.

Types of Singularities: Isolated – Essentialsingularities –Pole of order m– Residues – Residue


theorem(without proof) – Evaluation of real integral of the types $\mathbf{r}_{\mathbf{H}} f(x) dx$ and f

 $(\cos\theta,\sin\theta)d\theta$

UNIT - V:

Conformal mapping:

Transformation by e^z , lnz, z^2 , z^n (n positive integer), Sin z, cos z, z + a/z. Translation, rotation, inversion and bilinear transformation – fixed point – cross ratio – properties – invariance of circles and cross ratio – determination of bilinear transformation mapping 3 given points .

I teration methods

soultions of algebric and transidental equations:-, Bisection method :-Bisection method is a simple elarction method to solve an equation signed in now on the equation of the form of y= f(x) as extrely one real rade blis too Real Numbers a and b * f(a) -> -ve (20) f(a) -> +ve (>0) f(b)-) +ve (>0) f(b)-)-ve(20) * let us bised the interval (0,6) and two half Intervals and find mid point $x_0 = \frac{a+b}{2}$, $f(x_0) = 0$; then x_1 is a root * Repeat the process untill the root get approximately Same Sum:using bisection method.

(2011 12.1) men state and (1.57, 1.1)

18-1 -15 -

Toperal : de

Bol: - f(x) = x4-x-10 +10) = 10 d - 0 - 10 = -10 (20) $f(1) = (1)^{4} - 1 - 16 = 1 - 1 - 16 = -10 (20)$ $f(2) = (2)^4 - 2 - 10 = 16 - 2 - 10 = 4 > 0$ then the real roots are [1,2] $z_1 = a+b = \frac{1+2}{2} = \frac{3}{2} = 1-5$ (+ve) => F(1.5) = (1.5) - 1.5-10 the in (x). = -6.44 (-ve) jours 0 2 redravits Then the real roots are [1.5,2] (1) + auf 182 5 05+2 = 1.75 sille treid au tou + + (1.75) = (1.75) - 1.751-10 Nourstat flor tool = 12.871 (-velocit d+0 ak Then The read voots are (1.751,2) - + \$3 = 1.05+2 = 1.87 this mixorged $f(1.87) = (1.87)^{4} - 1.87 - 10$ = 0.85 (+ve) to prevent Then the seal roots are (1.87, 1.75) $x_{4} = \frac{1.87 + 1.75}{2} = 2.44 [.8]$

f(1.81) = (1.81)4 - 1.81 - 10 (av.) (PC) = - 1.07 (-ve) then the rest roots are: (1.81, 1.87) $x_5 = \frac{1.8171.87}{2} = 1.84$ $f(1.8d) = (1.84)^{34} - 1.84 - 10 = 1.84$ thus the sth and 4th real roots are approximately Same! (!!) !! et an .!. 2, Find the seal root of the equation. f(x) = x3-x-1 - 1 - 1 - (1-1) - (1-1) + $f(x) = x^3 - x - 1$ f (0) = 03-0-11=1-1 (20) 2000 mil. f(1)=(1)-1-1 = -11(20) +(2)=(2)3-2-1= 5(30) then the real roots are [1,2] $\chi_1 = \frac{a+b}{2} = \frac{1+2}{2} = \frac{3}{2} = 1.5 [+ve]$ (=) $F[1.5] = (1.5)^3 - 1.5 - 1 = 0.87 (+ve]$ then the roots are [1.5, 1]

 $x_2 = \frac{1.5+1}{2} = 1.25$ · (12.1)]. $-f(1-25) = (1-25)^3 - 1-25 - 1 = (-0.47)(-ve)$ alt walt then 200ts is [1.25, 1.5] $x_{3} = \frac{1.25+1.5}{2} = 1.3775$ -f (1.37) = (1.37)³ - 1.37-1= (+2730) (+Ve) the roots is [1.375,10] o det la contra $x_{y} = \frac{1.3111.1}{2} = \frac{2.8}{2} = 1.4$ $f(1.4) = (1.4)^3 - 1.4 - 1 = 0.3 (4 ve)$ 1-x-Ex = (x) } then roots is (1.4, 1,3) - to : (3) } $\chi_{5} = \frac{1.4+1.3}{2} = \frac{2.7}{2} + 1.35(1) + \frac{1.4+1.3}{2}$ then roots 95 [1.375, 1.0] (0) (0) 1. $34 = \frac{1 \cdot 375 + 1 \cdot 5}{2} = 2 \cdot 375 = 1 \cdot 3125$ $4 = \frac{1 \cdot 375 + 1 \cdot 5}{2} = 2 \cdot 375 = 1 \cdot 1875 - 1 = 1$ = 1.674 - 1.1875 - 1 = -0.15h (-ve)EL. 7.1] was stores with west

then the 3rd and 4th real roots are approximately same. 3. Find the real root of the equation. $d(x) = x^3 + x - 1$ $f(x) = x^{3} + x - 1$ $f(0) = 0^{3} + 0 - 1 = -1 (20)$ $f(1) = 1^{3} + 1 - 1 = 1 (20)$ × · (x)]. · · (•) 1. then the roots. is (1,0) $\chi_1 = \frac{1+0}{2} = \frac{1}{2} = 0.5$ f(0.5) = (0.5) 3 + 0.5 - 1 = -0.3875(-w) then the roots is (0.5,1) = (e) + $\Re_2 = \frac{0.5 \pm 1}{2} = (0.75)$ and store with $f(0.75) = (0.75)^3 + (0.75) - 1 = 0.17 (44e)$ then the roots are (0.75;0.5) . (22). (WI) X31= 0.25+0.5. = 0.625 1 $f(0.625) = (0.625)^3 + 0.625 - 1$ Then the roots are (0.625, 0.75)

then the 3rd and 4th real roots are approximity Same. max to M = (x)t. $1 \cdot \mathbf{x} + \mathbf{x} = (\mathbf{x}) - \mathbf{y}$ 4, x 3-3x - 5=0 (0): 03+0++ -- 1 (20) $f(x) = x^3 - 3x - 5 =$ $f(0) = 0^3 - 3(0) - 5 = -5(20)^{-1} \cdot (1)$ $f(1) = 1^3 - 3(1) - 5 = -7(10)^{-1}$ with with f(e) = 23-302:-5=0 (---)=8=0-52=)-3°((2.0))-(2.0)). f(3) = 3³-3(3)-5 = 18 (>0) it with then roots are (3,2) 1129 (viz, F= 3+2 = 5 = 2:5 = 2:5 = 10) · (21.0)]. f(2.5) = (2.5) - 3(2.5) - 5 toor alt walt. = 15.625 - 7.5 25 = 3,125: (+ve) then roots are (2.5, 2) and (200.00) $x_2 = \frac{2.5 + 2}{(2100, 200)} = \frac{4.5}{2} = \frac{3.25}{2} = \frac{3.25}{2}$

 $4(2.25) = (2.25)^3 - 3(2.25) - 5$ + = 11.390625 - 6.75 - 5 = -0.359 (-ve) then the roots are (2.25, 2.5) Ex. 1 23 = 2.25 +2.5 = 4.75 = 2.375 $f(2.375) = (2.375)^3 - 3(2.375) - 5$ = 13.396484375 - 7.125 -5 $(a<) 1=1+(a)^{2}$ (a) then the roots are (2.375, 2.25) = (1)+ $a_{y} = \frac{2.875 + 2.25}{2} = 2.3125$ 0 = ok xy = 2.3125 (tre) then the 3rd and. 4th real roots are approximatily Same. ()] Her? 5 2³-22 -5=0 - 6.2.1. 1 - 1 boy (inx) + x - (in) + inx LANK A [[m] - - [[2 m]] -Tosta . Laster ex-(ex) + - (e) +

secant method:- (100) - (100) $2nt1 = \frac{2n-if(x_n)-2nf(x_n+1)}{1}$ $f(x_n) - f(x_{n-1})$

" A real root of the equation x -5x+1=0 dies in the interval [0,1] perform four iteration. by secant method. $sol := ut f(x) = x^3 - 5x + 1 = 0$ $f(0) = 0^{3} - 5(0) + 1 = 1 (>0)$ f(1) = 1 - 5(1) + 1 = -3(20) $X_{0} = 0 \quad X_{1} = 1$ $X_{0} = 0 \quad X_{1} = 1$ By using Secont method: We with with 2n+1 = 2n-1 f(xn) - 2n+ (2n-2) -Jlan) - flan-1,

put n=1 $x_{i-1} + [x_i] - x_i + (x_{i-1})$ Xitl = - f[x1] - f[x1-1] x.f(x1) - x1f(x0] 22 =

+(x1)-+(x0)

$$\begin{aligned} &= \frac{0(-3) - 1(1)}{-3 - 1} = -\frac{1}{-4} = \frac{1}{4} = 0.25 \\ &= \frac{1}{-3 - 1} = -\frac{1}{-4} = \frac{1}{4} = 0.25 \\ &= \frac{1}{-3 - 1} = -\frac{1}{-4} = \frac{1}{4} = 0.25 \\ &= \frac{1}{-3 - 1} = -\frac{1}{-4} = \frac{1}{4} = 0.25 \\ &= \frac{1}{-3 - 1} = -\frac{1}{-3 - 1} = -\frac{1}{-3 - 23} (2p) \\ &= \frac{1}{-3 - 1} = \frac{2(1 + 1/3)}{-3 - 1} = -\frac{2(1 + 1/3)}{-3 - 1} \\ &= \frac{2(1 + 1/3)}{-3 - 1} = \frac{2(1 + 1/3)}{-3 - 1} \\ &= \frac{2(1 + 1/3)}{-3 - 1} = -\frac{1}{-3 - 1} \\ &= \frac{2(1 - 1/3)}{-3 - 1} \\ &= \frac{2(1 - 1/3)}$$

$$= 0.25 (0.10) - 0.18 (-0.23)$$

$$= 0.201$$

$$f(x_4) = f(0.20] = (0.20]^3 - 5 (0.20) + 1$$

$$= 0.0081 - 1.005 + 1 = 0.0031$$

(put n=4

$$x_{441} = \frac{x_{4-1}f(x_4) - x_4f(x_{4-1})}{f(x_4) - f(x_{4-1})}$$

$$= \frac{x_3f(x_4) - x_4f(x_3)}{f(x_4) - f(x_{3-1})}$$

$$= 0.18 (0.0031) - 0.20f(0.10)$$

$$= 0.000558 - 0.0201$$

$$= 0.000558 - 0.0201$$

$$= -0.019542$$

$$= 0.201.$$

(a) fex (as).

+ (43) -- ((43) -- (143 -- 1)

Carter-Contex

Cart - (200) 1.

eurs tuq.

J.C

140.33

$$\begin{aligned} x^{3} - x - 4 &= 0 \\ \text{sut } f(x) &= x^{3} - x - 4 &= 0 \\ f(0) &= 0^{3} - 0 - 4 &= -4 (20) \\ f(1) &= 1^{3} - 1 - 4 &= -4 (20) \\ f(2) &= y^{3} - 2 - 4 &= y^{2} (20) \\ x_{0} &= 1 \qquad x_{1} &= 2 \\ f(x_{0}) &= 4 \qquad f(x_{1}) &= 2 \\ \text{By using Secant method} \\ x_{n+1} &= \frac{x_{n-1} (f(x_{n})) - x_{2} + (x_{n-1})}{f(x_{n}) - f(x_{n-1})} \\ \text{out } n = 1 \\ x_{1+1} &= \frac{x_{1-1} - f(x_{1}) - x_{1} - f(x_{1-1})}{-f(x_{1}) - f(x_{n-1})} \\ x_{2} &= \frac{x_{0} - f(x_{1}) - x_{1} - f(x_{0})}{-f(x_{1}) - f(x_{0})} \\ &= \frac{1(2) - 2(-4)}{2 + 4} = \frac{2 + 8}{-5} = \frac{10}{-5} = 1.66 \\ f(x_{2}) &= f(1 - 6) = (1 - 66)^{3} - 1 - 66 - 4 \\ &= -(1 - 0) (20) \\ \end{aligned}$$

$$x_{3} = \frac{x_{1} + (x_{2}) - x_{2} + (x_{1})}{-1(x_{2}) - -1(x_{1})}$$

$$= \frac{2(-1.08) - 1.666(2)}{-1.08 + 2}$$

$$= -\frac{2.16 - 3.32}{-3.08}$$

$$= \frac{-5.48}{-3.08} = 1.78$$

$$4(x_{3}) = 4(1.77) = (1.78)^{3} - 1.78 - 4$$

$$= -0.14$$

$$gut \quad n = 3$$

$$x_{3+1} = \frac{x_{3-1} + (x_{3}) - x_{3}f(x_{3} - 1)}{-1(x_{3}) - 1(x_{3} - 1)}$$

$$x_{4} = \frac{x_{2} + (x_{3}) - 1.78(-1.08)}{-0.14 + 1.08}$$

$$= \frac{0.23 + 1.92}{0.94}$$

$$= 1.79$$

$$4(x_{3}) = \sqrt{2} + x - 1 = 0$$

$$f(x) = \sqrt{3} + x - 1 = 0$$

$$f(x) = \sqrt{3} + x - 1 = 0$$

$$f(x) = \sqrt{3} + x - 1 = 0$$

$$f(x) = \sqrt{3} + x - 1 = 0$$

$$f(x) = \sqrt{3} + x - 1 = 0$$

$$f(x) = \sqrt{3} + x - 1 = 0$$

$$f(x) = \sqrt{3} + x - 1 = 0$$

$$f(x) = \sqrt{3} + x - 1 = 0$$

$$f(x) = \sqrt{3} + x - 1 = 0$$

$$f(x) = \sqrt{3} + x - 1 = 0$$

$$f(x) = \sqrt{3} + 1 - 1 = -1(20)$$

 $x_0 = 0$ $\partial_1 x_1 = 1$ $\partial_1 = (a + 1)$ flxo)=-1 flx1)=1 by using secont method $x_{n+1} = \frac{x_{n-1}f(x_n) - x_n f(x_{n-1})}{n}$ flxn) - f(xn-1) put n=1 $x_{i+1} = \frac{x_{i-1}f(x_i) - x_1f(x_{i-1})}{f(x_i) - f(x_{i-1})}$ $\alpha_2 = \alpha_0 f(\alpha_1) - \alpha f(\alpha_0)$ f(x,)-f(x0) $= 0(1) - 1(-1) = \frac{1}{2} = 0.5$ f(x2) = f(0.5) = (0.5)3 + 0.5 - 1 $put_{n} = 2$ $\chi_{2+1} = \chi_{2-1} - f(\chi_2) - \chi_2 - f(\chi_2 - 1)$ se seg $f(x_2) - f(x_2 - 1)$ hass $x_{3} = \frac{x_{1}f(x_{1}) - x_{2}f(x_{1})}{f(x_{2}) - f(x_{1})}$ erstrant out boit jeil (20.317) - 0.5(1) (3) - 1 = -0.87 = 0.63 = -0.87 = 0.63

 $+(x_3) = +(0.63) = (0.63)^2 + (0.63) - 1$ = +0.11 1 2 (28) put n= 3 x3-1+(x3)-x3+(x3-1) 73+1 = f(x3) - f (x3-1) $x_{y} = x_{2}f(x_{3}) - x_{3}f(x_{2})$ ind $f(x_3) - f(x_2)$ = 0.5(-0.11) - 0.63 (-0.37) - 0.11 +0.37 -= -0.05 + 0.230.251 0.251 Regular - tals? method (or) (methods of falsi position) * Regular false method is one of the simplest and most reliable numerical method to find an approximate root of a given capation f(x)=0 * In this method, we first find two numbers 'a and 'b' (a2b) such that f(a) and f(b) are of opposite signs.

* this means that the root of the equation die in (a,b) * Then the rest approximation is abtained by $z_1 = \frac{a f(b) - b f(a)}{-f(b) - f(a)}$ 1, solve 23-42+1=0 by regular-falsi method up to 3-decimal places. Soluis - let f(x) = x-4x+1=0 $f(0) = 0^{3} - 4(0) + 1 = 1 (>0)$ $f(1) = (1)^3 - 4(1) + 1 = -2(<0)$ Then the roots dies blue [0,1] $a_{0}=0$ $b_{0}=1$ $f(a_{0})=1$ $f(b_{0})=-2$ by using Regular - fals? method. $a_1 = a_0 f(b_0) - b_0 f(a_0)$ +(60) - +(a0) $a_1 = \frac{o(-2) - i(1)}{-2 - 1} = \frac{-1}{-3} = \frac{1}{3} = \frac{-3}{-3} = \frac{1}{3} = \frac{1}{3$ $f(a_1) \in f(0.333) = (0.333)^3 - 4(0.333) + 1$ 1101211= -0.295. 1120- HOUL

Then the roots dies blue [0.833, 07 $a_1 = 0.333$ $b_1 = 0$ fai) = -0.295 f(bi)=1 1 AC $a_2 = a_1 f(b_1) = :b_1 f(a_1)$ f(bi) + f(ai) xy is svice i, = 0.333 × 1, - 0 × (-0.295.) 1 - 6-0,295) - -= 0.333 = 0.257 $f(a_2) = -f(a_2s_7) = (0.2s_7)^3 - 4(0.2s_7)$ 1+ 2000 ho 1 then the root dies blue (0.257,0) a2 = 0.25.7. b2 = 0 f(a2)=-0,011 f(b2)=1 $a_{3} = \frac{a_{2}f(b_{2}) - b_{2}f(a_{2})}{f(b_{2}) - f(a_{2})}$ 1 - 0 - 1+0.011 = 0.257 = 0.252Q

+(a3) = - f (0.254) = (0.254)3 - 4 (0.254)+1

E0000.0

then the root stes blue (0.254, 0.257)

Q3=0.254 63= 3.259

f (a3) = 0.0083 flog) = -0.011

2.4 = 23+ (b3) - b3+(a3)

- f (bs) + f (as)

= 0.254 (-0.011) - 0.25 = (0.000BB

-0.011 - 0.0003.

= - 0.0002 - 0.000007

- 5.01:03

2, 23-22-24 = 0 (+20.0) - (+20.0) + - (00) $-f(x) = x^3 - x - 4$ $-f(0) = (0)^3 - 0 - 4 = -4(10)$ $-f(1) = (1)^3 - 1 - 4 = -4(10)$ $f(2) = (2)^3 - 2 - 4 = 2(>0)$ then the roots lians blue [1,2] ao=1 bo=2 f(ao)=-4 f(bo)=2 By using ougular - false method a1 = 20-1(60) - b. f(20) -10(b.) - f (ao) · 1(2)-2(-4) 2+4 $= \frac{2+8}{6} = \frac{10}{6} = \frac{5}{3} = \frac{1.666}{3}$ $-1(a_1) = +(1.666) = (1.666)^3 - (1.666) - 4$ = - 1.041 -then the roots lies blue [1.666,2] $q_2 = a_1 f(b_1) - b_1 f(a_1)$ $f(b_1) - f(a_1)$

$$= \frac{1.666(2) - 2(-1.041)}{241.041}$$

$$= \frac{1.6666(2) - 2(-1.041)}{241.041}$$

$$= 1.7807$$

$$= 1.7807 = 1.7807$$

$$= -0.1420$$

$$= -0.1420$$

$$= -0.1420$$

$$= -0.1420$$

$$= -0.1420$$

$$= -0.1420$$

$$= \frac{1.780(2) - 627(22)}{4(62) - 4(62)}$$

$$= \frac{1.780(2) - 9(-0.140)}{8 - (-0.140)}$$

$$= \frac{3.56 + 0.58}{2.14} = 1.494$$

$$= 1.494$$

$$= 1.494$$

$$= 1.494$$

$$= 1.494$$

$$= 1.494$$

$$= 1.494$$

$$= 1.494$$

$$= 1.494$$

$$= 1.494$$

$$= 1.494$$

$$= 1.494$$

By using Regular - Ilasi method a, = <u>a.-1(b.)</u> - <u>b.</u>-f(a.) -1(b.) - -f(a.) = 1(5) - 2(-1) 5 - (-1) _1(01) = -1(1.333) = (1.333) - (1.333) -1 = 0.035 then 200ts (1.333,1) $q_2 = a_1 + (b_1) - b_r + (a_1) = 1.333 (-1) - 16a_2$ -1 (bi) -1 (ai) -1 -0.035 -1-333 - 0.035 -11/10- 11-11-11-11-2 -1.035 = 41.368 (and (Prank , los a) +1.035 = 1.321

iteration method 8consider an equation - f(x) = 0 which can take in the form 2= p(2) as \$ (2) L1 \$ (2) is converger? 21 = 0 (20) 22 = 0(8) 23 = 2(22) ", solve z3-z-11 by using iteration mehod $det - f(x) = x^{2} - x - 11$ 5(0) = 03 - 0 - 11 = - 11 (20) -f(1)= 1-1-11=-11(20) -1(2)= 23-2-11=-5 (10) $-f(3) = (3)^3 - 3 - 11 = 13(50)$ Then the roat dies blue (2.3] Xo = 0+5 = 2+3 = 3 = 2.5 23 = 2+11 2 = (2+11)3 $\varphi(x) = \chi = (x + n)^{1/3}$

P(x0)= (x+11) "3 \$ (2.5) = (2.5+11) 3 \$ 120) = 2.379 \$ (x1) = (x0+11)"3 = (2.379+11) 13 = 2.371 \$ (x2) = (x,+1)/3 = (2.371+11) 1/3 = 2.371

2, x3-5x+3 f(1) = 13-5(1)+3==1 (20) then the rost the blue [1,2] Xo = 0+6 = 12 = 3 = 1.5. from the egn 23-52+3=0 23= 52-3 q(z)= z= (sz-3)"3

p(7)= (57-3) 13 = (\$(115)-3)1/3 \$ 20 = 1.650 \$ 2, = (320-3) 3 = (=(1::50-3)"3 = 1.732 \$ (22) = (3(1737)-3) 1/3 = 1.763 d (23) = (5(1.283)-3)1/2 = 1.807 \$ (xy) = (S(1.80=)-3)"3 = 1.819 $= (5(1.819) - 3)^{1/3}$ $\phi(x_{5}) = (s(1,225)-3)^{1/3}$ \$ (x+). (\$ (1.828-3)"3 $\beta(\chi_8) = (s(1.830)-3)^{1/3}$

\$(x4)= (s(1.831)-3)"3 = 1.83)

H.W 3, 5x3- 20x+3 -f1x)= 5x3- 20x+3 -f(0) = s(0) - 20(0) + 3 = 3-1(1)= 5(1)-20(1)+3=-12(20) -112)= 515)-2010)+3=3. +(3)= 5(3)=20(3)+3=78 185 - 60 +3 = 5(4)3-0

Newton - Raphson method: * det f(x) be the given operation for which we roat to f(x_0) is wast onal roal. + Randowly Select two values a could b Such that f(a), f(b) have opposite signs * det the initial - approximation a and b on a+b * Iterative formula to find approximation $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

.: using newton's - Raphson method $x^3 - 3x + 3 = 0$ Sol:- det $f(x) = x^3 - 3x - 5 = 0$ $f'(x) = 3x^2 - 3$ +10)= (0)³-3(0)-5=-5(20) $f(i) = (i)^{2} - 3(i) - 5 = -7, (20)$ $f(2) = (2)^3 - 3(2) - 5 = -3 (20)$ $f(3) = (3)^3 - 3(3) - 5 = i3(>0)$ then the roat lies blue [2,3] $x_0 = \frac{a+b}{2} = \frac{2+3}{2} = \frac{5}{2} = 2.5$ $-f(x_0) = g(2.5)^3 - 3g(2.5) - 5 = 3.125$ $\lambda_{n+1} = \alpha_n - \frac{f(\alpha_n)}{f'(\alpha_n)} \quad (\infty)$ n=0 $\chi_{o+1} = \chi_o - \frac{f(\chi_o)}{f'(\chi_o)}$ $-f'(x_0) = 3x^2 - 3$ = 3(2.5)2-3 510.0 = 15.75 $\frac{11}{2} = 2.5 - \frac{3.125}{15.75} = 2.5 = 0.198$ p = 2.302

net Cutton . f(x1) = 23-32-5 = f (2.302 = (2.302) - 3(2.302) - 5 = 0.292 = aran $f(x_1) = f'(2302) = 3(0302)^2 - 3$ = 12.897 put n=1 2- (02 - (0) = (0). $21+1 = 2, -\frac{1}{4(21)}$ Z2 = 2.302 - 0.292 12.897 = 2.302 - 0:0226 25 . 6 - 20 = 2.280. $f(x_2) = (2.280)^3 - 3(2.280) - 5 = 0.012$ $f'(x_2) = 33(2.280)^2 - 3 = -26764$ 12.594 Jut n= 2 (1) 1 - 01 - 12 22+1= 22 - <u>H(x2)</u> (1)-+(19(2) ×3 = 2.280 - 0.012 (12.594) = 2.280 + 0.0009

= 2+2840 = 2.279

x2-5x+3 $lut - f(x) = x^2 - 5x + 3$ - f(x) = 2x - 5 $f(0) = (0)^2 - S(0) + 3 = 3(>0)$ $f(1) = (1)^2 - S(1) + 3 = -1(20)$ then the roots is (110) $x_0 = \frac{a+b}{2} = \frac{1+0}{2} = 0.5$ $f(x_0) = (0.5)^2 - 5(0.5) + 3 = 0.75$ gl(x0) = 2(0.5)-5=-4 × 0+1 = ×2 - foxo) put n=0 Sector 5 (to) = 0.5 - 0.75 = 0.5 + 0.187 x1 = 0.587 +(x1) = f(0,687) = (0,687) - 5(0,667)+3 = 0.036 f(x1) = 0(0.087) - 5 -3.626

20 - 24 - fixed and a second an 2 xx = (x) = . 0.687 - 0.036 -3.626 = 0.687 + 0.009 $0 \chi_2 = 0.696$ (1) . (1) 1. + x - cosx = 0 0 21 2 me ali - mal. $f(z) = \chi - \cos \chi = 0 - f'(z) = 1 + s^{2} m$ f(0) = 0 - cos(0) = -1(20)f(1) = 1 - cos(1) = (0.000 + 1) 1 - 0.299 =0.001 (20) then the roots (0,1) $x_0 = \frac{a+b}{2} = \frac{a+b}{2} = \frac{a+b}{2} = 0.5$ $f(x_0) = (0.5) - 105(0.5) =$ = (0.5) - 0.999 = -0.499f'(x0) = 1 + sind = 1 + Sin(0.5)= 1+0.008 = 1.008

Tatapoloticality and plate waterouse values which lies <u>PPHUS</u> Prese Entry tabahilar at = 9.5+ 0.495 = 8.995 $f(a_1) = (0.995) - (0.5 (0.995))$ = -0.004 het hangels i 12 $f(x_1) = 1 + sin (0.995)$ $f(x_1) = 1 + sin (0.995)$ = 1+ 0.0173 = 1.0173 = 0.0173 to the solution (1814, 1 and a Sole of of Aborton with persing to service and $z = 0.995 - \left[\frac{-0.004}{1.0123}\right]$ 2 2 0.9957 0.003 = 0.998 The neutro's formand difference formula table top A table to · + open (s-w) (w) w

Interpolation: - Interpolation is the process of finding out of the unknown values which lies in the given set of tabulated value.

x 20 21, 2n

where 'z' is Independent value and 'y' is dependent value.

$$u = \frac{x - x_0}{h}$$

и (u-1) (u-2) ---- (u-n+1) Дⁿyo

in (in) (in -

1, use Newton's forward interpolation formula and given table of value of I(x) when x=4, given

x 3 5 7 9 y=4(x) 180 150 120 90 xy:-kt $h=x, -x_0=s-3=2$

$$u = \frac{\chi = \chi_0}{h} = \frac{4 - 3}{2} = \frac{1}{2} = 0.5$$

unerg mentons forword for interpolation

J= yo+ 4 Dyo+ 4(4-1) D2 yo+ <u>(u+) (u-2)</u> <u>A</u>³yo] $= 180 + \frac{0.5}{1} (-30) + \frac{0.5(0.5-1)}{2} (0) + 0$

- = 180 -15
- = 165 11

& find the newtons forward interpolation formula the value of f(2.5) from the following table

is aving we are weather (site

x 2- 3 45 Y=flx) 14.5 16.3 M5 18

. : det h= 21-20= 3-2= 1

 $4 = \frac{x - x_0}{h} = \frac{2 \cdot 5 - 2}{1} = 0.5$

 Δy_0 $\Delta^2 y_0$ $\Lambda^3 y_0$ 4 X 16.3-14.5 14.5 -0.6 -0.1 2=1.9 "the same 3 16.3 -0.7 Alumitat. 17.5-163 4 17.5 - 1.2 18-17-5 5 18 = 0.5

using Newton's forward for interpatition $\int \sigma mula = \frac{1}{2!} \Delta y_0 + \frac{1}{2!} \Delta^2 y_0 + \frac{1}{3!} \Delta^2 y_0 + \frac{$ 0340 $= 14.5 + \frac{0.5}{1}.1.8 + \frac{0.5(0.5-1)}{2}(-0.6) + \frac{0.5}{2}$ 6 (0.5(0.5-1) (0.5-2) (-0.1) = 14:5+0.9:+ $\left(\frac{0.5(-0.5)}{2}\right) \times (-0.5) +$ = 14.5 + 0.9+ [-0.125 × (-0.6)] + [0.0625 = 15.4 +0.075 -0.006 = 15.469 Newton's backword interpolation formula. It xo, x, x. xni, xn be a set of equidistant value argument & and Jo, y, y2 yn, yn be the

interpdating the volue of the function y = t/z) $h = x_1 - x_0$ det $u = \frac{x - x_0}{h}$

Newton's back ward unterpolation. formula is

formula is $y(x) = y_n + \frac{4}{11} \nabla y_n + \frac{4(u+1)}{2!} \nabla^2 y_n + \frac{4(u+1)(u+2)}{3!} \nabla^3 y_n + \cdots$

, use Newton's backward interpolation formula find the following table of values of f(0.63)

and indexide	A REAL PROPERTY OF A REAL PROPER	A-Mar is an internal
Difference	tub lo	3 -4
* 4	The Di	yn Ogn Dyn
0.30 0.61	79 51-70 = 0.0375	592 bus =
0.40 0.65	59	t in science
0.50 0.69	715 =0.0361	0.0014
0.60	57. 43-42 -	100019 -0.0001
0.70 0.7		0.0019 0 0.0005
using Newton	s buildward	interpolation
-formala		Contraction of the local division of the
9= 9, + 4	Dyn+ ulut	$\frac{1}{2} \nabla^2 y_{n+} \frac{u(u+1)(u+2)}{3!}$
101	a carrie ta	√yn.
+ 464	(+1) (u+2) (u+3 41) 44.
The second se		ALTER AND A CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESC
= 0.7580 + -0	- (0.0323)	2 (-0.0019)
+0 + -0	.7 (-0.7,+1) (-0.	7t2) (-0.773) x
2 23	24	13 (0.0005)
1-	E	18
		III

= + 0.7580 - 0.02261 - 0.105 (-0.0019) -0.0261 (0:0005) = 0.7586 - 0.02261 + 0.00019 - 0.000013= 0. 736567 Maria-125217= 74P30 Q 2200 2, find the solution using Newton's backward interpolation at 2 = 1925 x 1891 1901 1911 1921 1931 y 46 66 81 93 101 Dhance Sot det 24, - 20 = 1901, -1891 = 10 = 4 $u = \frac{2 - 2n}{h} = \frac{1925 - 1931}{1000} = -0.6$ Difference fable :-3h Th D3m TYn 1 - Y -1891 46 Yi-Yo 20 -5 2 -3 (190 1: 66 Y2 - Y1 15 -3 -1 1911 81

1921 93 Y3-Y2 12 -4 1931 [0] Yu-Yz using Newton's backward interpdation 1. formularisa DEVIDED DILLERERIAN $\begin{array}{c} y = y_{n} + \frac{4}{1!} \nabla y_{n} + \frac{4(u+1)}{2!} \nabla y_{n} + \\ \frac{4(u+1)(u+2)}{3!} \nabla y_{n} + \frac{4(u+1)(u+2)(u+3)}{3!} \\ \end{array}$ (cr-k) (ne-k) (orgn) + (she he all) + i $\begin{aligned} y &= 101 + (-0.6)(8 + (-0.5)(-0.64))(-0) + \\ \end{bmatrix} = 101 + (-0.6)(8 + (-0.5)(-0.64))(-0) + \\ \end{bmatrix} \end{aligned}$ (-0.6) (0.6+1) (-0.6+2") (-) kating attil $\frac{0! \cdot 1!}{(-0.6)} \frac{6(k!)}{(-0.64!)} \frac{(-0.64!)}{(-0.64!)} \frac{($ d= 101+(-4.8)-0.12(14)+0.056+0.1008 g=1011+ (-4.2) + 0.48 + 0.056 + 0.1008 = 96.83.

Newton's General interpolation tormula (uniqual intervals):-1 Newton's divided difference formula 2, dougrange's formula for uniqual intervaly 1. NEWTON'S DEVIDED DIFFERENCE FORMULA f(x) = f(x0) + (x-x0) + f(x0,x1) + (x-x0)(x-x0) $f(x_0, x_1, x_2) + (x_1 - x_0) (x_1 - x_1) (x_1 - x_2)$ $f(x_0, x_1, x_2, x_3) + (x_1 - x_0) (x_1 - x_1) (x_1 - x_2) (x_1 -$ first devided difference: $f(x_0, x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \quad (or) \quad \frac{y_1 - y_0}{x_1 - x_0}$ $f(x_1, x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \quad (0^{\circ}) \quad \frac{y_2 - y_1}{y_2 - x_1}$ Second devided difference Second devided difference $f(x_0, x_y x_2) = \frac{f(x_1, x_2) - f(x_0, x_1)}{x_2 - x_0}$

f (x, x, x3)= f(x, x3)-f(x, 1x2) Therd deveded difference : -+(x10, x1, x2, 23) = -f(x1, x3, 23) - f(x0, x1, 22) (1)(12) 1- (18, 18) \$3-70 KIER . 1 , using newton's divided difference formula from the following table & of values of fla) compute flb) x 1 2 7 8 (NISA $x_0 = 1$ $x_1 = 2$ $x_2 = 7$ $x_3 = 8$ Yo=1 91=5 92=5 y3 =4 ASTO D-F(x) $f(x_0, x_1) = \frac{y_1 - y_0}{x_1 - x_0} = \frac{s - 1}{2 - 1} = \frac{y}{1} = 4$ $f(x_1, x_2) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 5}{4 - 2} = \frac{9}{5} = 0$ $f(x_2, x_3) = \frac{y_3 - y_2}{x_3 - x_2} = \frac{y_2 - y_2}{x_3 - x_2} = \frac{y_2 - y_3}{x_3 - x_2} = \frac{y_1 - y_2}{x_3 - x_2} = \frac{y_1 - y_2}{x_3 - x_3} = -1$

 $\frac{\Delta^2 + (x)}{f(x_0, x_1, x_2)} = \frac{f(x_1, x_2) - f(x_0, x_1)}{f(x_0, x_1)}$ $f(x_0, x_0, x_0) = \frac{1}{2} \frac$ $f(x_1, x_2, x_3) = f(x_3, x_2) - f(x_1, x_2)$ a source a source in the a 23-22, and price I Autor je a stabil- principlet state avoid $= \frac{-1-0}{8-2} = \frac{-1}{-5}$ $= \frac{-1}{-5}$ $\Delta^3 F(x)$ f(x0,x1,x2,x3)= f(x,,x2x3)-f(x0,x,1x2) x \$3-\$0 = -6,+ 7, 16 1 06 8-1 (x)7-1 with et . (sx= 14) By using Newtords difference Enterpolation Jormula (unequal Intervals)

y=f(x0) + (x-26) f.(x0, x1)+ (x-x0) (x-x,) + (x, x, x2) + (x-x) (x-x1)(x-x2) $f(x_0, x_1, x_2, x_3)$ · x la many $= 1 + (G - 1)(4) + (G - 1) (G - 2) (-\frac{4}{5}) + (G - 1)$ (6-2) (6-7) (m) y = 1+20-20 (0.666)+ (-20) (-14) =>1+20 -20(0:666) -20(0.071) - 1+20-13.32-1.402 = 6.278 Lagrange's divided difference formula: $f(x) = f(x_0) \frac{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} + f(x_1)$ $\frac{(x_0 - x_0)(x_0 - x_2)(x_0 - x_3)}{(x_0 - x_2)(x_0 - x_3)} + f(x_2)$ (" (x-x) (x-x) (x-x3) + f(x3) (x2-xd(x2-x1)(x2-x3) (x-2) (1.1) () (x-x6) (x-x6) (x-x6) (x-x6) (x-x6) (x-x6) (1-11) (2 (23-20) (23-21) (23-22) (1) (2))

Ousing dagrange's divided difference. formula from the following table of Value of z = 10 (cer, cer or) } y = f(x) 12 13 14 16 Gaven 2=10 - 1 + (2000) 0 - 0 - 1 - 3 By using dagrange's difference formula. $f(x) = -f(x_0) \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_2)(x_0-x_2)(x_0-x_3)} + f(x_1)$ $\frac{(z-z_0)(z-z_2)(z-z_3)}{(z_1-z_0)(z_1-z_3)(z_1-z_3)} + f(z_2)$ $\frac{(z-z_0)(z-z_1)(z-z_3)}{(z_2-z_1)(z_2-z_3)} + f(z_3) \frac{(z_2-z_0)(z-z_1)(z_3-z_3)}{(z_3-z_0)(z_3-z_1)(z_3-z_3)}$ $= 12 \frac{(10-6) \cdot (10-9) (10-11)}{(5-6) (5-9) (5-11)} + 13 \frac{(10-5) (10-9) (10-11)}{(5-6) (5-9) (5-11)} + 13 \frac{(10-5) (10-9) (10-11)}{(6-5) (6-9) (6-11)}$ $+14 \frac{(10-5)(10-6)(10-17)}{(9-5)(9-6)(9-11)} +16 \frac{(10-5)(10-6)(10-9)}{(11-6)(11-9)}$

(+16 (5) (W(1)) (4)(3)(2) (6)(5)(2) $= 12 \frac{-4}{-24} + 13 \frac{-5}{+15} + 14 \frac{-20}{-24} + 16 \frac{20}{60}$ $= 12 \left(\frac{4}{24}\right) + 13 \left(\frac{5}{15}\right) + 14 \left(\frac{20}{24}\right) + 16 \left(\frac{20}{40}\right) - \frac{1}{24} = 12 \left(\frac{4}{24}\right) + 13 \left(\frac{5}{15}\right) + 14 \left(\frac{20}{24}\right) + 16 \left(\frac{20}{40}\right) - \frac{1}{24} = 12 \left(\frac{1}{24}\right) + 13 \left(\frac{5}{15}\right) + 14 \left(\frac{20}{24}\right) + 16 \left(\frac{20}{40}\right) - \frac{1}{24} = 12 \left(\frac{1}{24}\right) + 13 \left(\frac{5}{15}\right) + 14 \left(\frac{20}{24}\right) + 16 \left(\frac{20}{40}\right) - \frac{1}{24} = 12 \left(\frac{1}{24}\right) + 13 \left(\frac{1}{$ $= 12 \left[\frac{1}{6} \right] + 13 \left[\frac{1}{3} \right] + 14 \left[\frac{5}{6} \right] + 16 \left[\frac{1}{3} \right]$ = 1,91-4,329+11.662 +5.328 (3)2 300 804 305 307 Y=f(x) 2.4771 2.4829 2.4843 2.4843 Given z= 301 (20) 1024.2. [...] By using lagrangies difference formula -f(x) = -f(x0) (x - x1) (x - x2) (x - x3) + f(x1) (x0 - x1) (x0 - x2) (x0 - x3) $\frac{(\chi - \chi_0)(\chi - \chi_2)(\chi - \chi_3)}{(\chi_1 - \chi_0)(\chi_1 - \chi_2)(\chi_1 - \chi_3)} + \frac{f(\chi_2)}{(\chi_2 - \chi_0)(\chi_2 - \chi_1)(\chi_2 - \chi_3)}$ ++(x3) (x-x0) (x-x1) (x-x2) (x3-x0) (x3-x1) (x3-x2)

= 2.4771 (301-304) (301-305) (301-307) (300-304) (300-305) (300-307) + 2.4829 (301-300) (301-305) (301-302) (304-300) (304-305) (304-307) + 2.4843 ((301-300) (301-304) (301-307) (305-307) (305-300) (305-304) (305-307) + 2.4871 (301-300) (301-304) (301-305) -(307-300) (307-304) (307-305) $= 2.4771 \left[\frac{(-3)(-4)(-6)}{(-4)(-5)(-7)} \right] + 2.4829 \left[\frac{(1)(-4)(-6)}{(4)(-1)(-3)} \right]$ + 2.4843 $\left[\begin{array}{c} (1) & (-3) & (-6) \\ \hline (5) & (+1) & (-2) \end{array} \right]$ + 2.4871 $\left[\begin{array}{c} (1) & (-3) & (-4) \\ \hline (7) & (3) & (-2) \end{array} \right]$ 20 . 608 $= 2.4771 \left(\frac{-72}{-2.85}\right) + 2.4829 \left(\frac{24}{12}\right) + 2.4843$ $\left[\frac{18}{-10}\right] + 2.4871 \left(\frac{12}{42}\right)$ = 2.4771 (0.5142)+ 2.4829 (2)+2.4843 + 2.4871 (0.2837) = 1:2737 + 4.9658 - 4.4717 + 0.7105 == 6.95-4.717 (at 1) (at 1) (at 1) $= 2.478 \mu (x x) (x x)$

(1) = 2.4771 (301-304) (301-305) (301-307) (300-304) (300-305) (300-307) + 2.4829 (301-300) (301-305) (301-307) (304-300) (304-305) (304-307) NL 17. 10 + 2.4843 ((301-300) (301-304) (301-307) (305-300) (305-304) (305-307) + 2.4871 (307-300) (307-304) (307-305). Nu eva $= 2.4771 \left[\frac{(-3)(-4)(-6)}{(-4)(-5)(-7)} \right] + 2.4829 \left[\frac{(1)(-4)(-6)}{(4)(-1)(-3)} \right]$ of is. Trop + 2.4843 $\left[\begin{array}{c} (1) (-3) (-6) \\ \hline (5) (+1) (-2) \end{array} \right]$ + 2.4871 $\left[\begin{array}{c} (1) (-3) (-4) \\ \hline (7) (3) (2) \end{array} \right]$ fun The wft $= 2.4771 \left(\frac{-72}{-2.85} \right) + 2.4829 \left[\frac{24}{-12} \right] + 2.4843$ for $\begin{bmatrix} 18\\ -10 \end{bmatrix}$ + 2.4871 $\begin{pmatrix} 12\\ 42 \end{pmatrix}$ bs = 2.4771 (0.5142)+ 2.4829 (2)+2.4843 a + 2.4871 (0.2837) EV De (= 1: 2737 + 4.9658 = 4.4717 + 0. $n = \frac{1}{6} = \frac{1}{6} \left(\frac{95}{5} - \frac{1}{4} + \frac{717}{6} \left(\frac{8}{5} + \frac{1}{5} \right) \left(\frac{8}{5} + \frac{1}{5} \right) \left(\frac{3}{5} - \frac{1}{5} \right) \left(\frac{3}{5} + \frac{1}{5}$ = 2.478 $\mu_{(x-x^2)}(x-x^2)(x-x^2)(x-x^2)(x-x^2)$

Unit-2

unit - II (vovid Numerical integration, Solutions of ordinary differential equations with initial conditions. Numerical integration: - The process of evaluating a définite integral from a set of tabulated values of the integrated fix) is called Numerical Entegration. Fropezoidal rule: - det -f(x) be a continuou function on the interval Earb Now divide. the intervals (a,b) into n equal sub interval with each of whith the <u>b-a</u> formula for trapezoidal sule) f(x) dx = - (yo+yn) + 2[yi+y2+ - - yn-1) 1, Evaluate 15-17 dz by using Tropezoidal Jule by taking number of Internals n=4

Given of 1/2 dx housed comparing flada in princ a=0 b=1 $-f(a)=\frac{1}{1+x}$, n=4where $h = \frac{b-9}{n} = \frac{1-0}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$ y=f(x) 1 1+0.25=0.8 1+0.5=0.66 0.571 race of dat rules - det 1(x) be a continuous By using Trapozaidal sull 0.5 $\int f(x) dx = \frac{1}{2} \left[(y_0 + y_4) + 2(y_1 + y_2 - y_m) \right]$ = $\int \frac{1}{1+x} dx = \frac{0.25}{2} \left((1+0.5) + 2 \left(0.84 - 0.66+0.571 \right) \right)$ = 0:125 (1.5+2(2.031)] = 0.125 (1.5 + 4.074)= 0.125 (5.574) = 0.6967 2:44

2, Evaluate of T+22 dz. by using Troposoided rule given $\int \frac{1}{1+x^2} dx$ comparing $\int f(x) dx$ $given \int \frac{1}{1+x^2} dx = \frac{1}{1+x^2}$, n=6 a=0 b=6 $f(x) = \frac{1}{1+x^2}$, n=6where $h = \frac{b-a}{n} = \frac{6-0}{6} = 1$ grienquis $\chi = 0 = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6$ y = -fh) 1 0.5 0.2 0.1 0.058 0.036 0.027 $\frac{1}{1+x^2} = \frac{1}{(1+1)} = 0.5$ $\frac{1}{1+\chi_1^2} = \frac{1}{(1+\chi_2^2)} = \frac{1}{5} = 0.2^{1/2} \qquad 5.0 \qquad 0 \qquad \chi$ $\frac{1}{1+\chi_1^2} = \frac{1}{(1+\chi_2^2)} = \frac{1}{5} = 0.2^{1/2} \qquad 500.0 \qquad 0 \qquad (x)^2.$ by using Trapozaidal vule $= \int \frac{1}{1+x^2} dx = \frac{h}{2} \left[(1+0.027) + 2(0.5+0.210.1+0.058) \right]$ [3.5] C+ (1.0] 1.0 + 0.038) = 0.5 [1.027+2(0.896) = 0.5 [1.027 + 1.792] - 0.5 [2.819] = 1.4095

2, Evaluate of 23 dx with 5 546. Interne By using Trapezoidal rule. Shi-given j 2° dz comparing 1/x dx 1 sector a=0 b=1 $f(x) = x^3$ n=5where $h = \frac{1-0}{5} = 0.2$ = 0.2 2 0 0.2 0.4 0.6 0.8 1 flz) 0 0.008 0.064 0.216 0.512 1 By using Troposidal sull $\int f(x) dx = \frac{0.2}{2} [0+1] + 2 [0.008+0.064+ 0.216+0.5]$ = 0.1[0+1]+2[0.8] · 0.5 [1.027 + 2 (0.896) = 0.1[1]+[1.6] 0.1[2.6] 10.0] 2.0 . = 0.26 2101.1 .

14, Evaluate 55 sinz de with 5 sub-inter By using Trapezoida vale given J sinz dz a=0 b=5 f(x)=sinx n=5where $h = \frac{S-0}{5} = 1$ 2012345 f(2) 0 0.017 0.034 0.052 0.069 0.087 $= \frac{1}{2} \left[0.087 \pm 0 \right] \pm 2 \left[0.017 \pm 0.034 \pm 0.052 \right]$ +0.069 = 0.5 [0.087]+2 [0.172] = 0.5 [0.087] + [0.344 = 0.5 [0.431] = 0.2155

simpson's to rule :- $\int_{a}^{b} f(x) dx = \frac{h}{3} \left[(y_0 + y_m) + 4 (y_1 + y_3 + y_5 - ...) + 2 (y_2 + y_4 + y_6 - ... + y_m) \right] where$ <u>D-a</u> n

1. obtain the value of
$$\int_{0}^{1} \int \frac{1}{1+z^{2}} dx$$
 using
simpson's $\frac{1}{3}$ is rule by dividing the illerval
at [0,1] into 4 qual parts.
given $\int_{0}^{1} \int \frac{1}{1+z^{2}} dx$
comparing $\int_{0}^{1} f(x) dx$
 $a = \delta$, $b = 1$, $f(x) = \frac{1}{1+z^{2}}$, $n = 4$
 $h = \frac{b-a}{2} = \frac{1-0}{4} = \frac{1}{4} = 0.25$
 $x = 0 = 0.25 = 0.5 = 0.45$
 $y = f(x) = \frac{1}{4}$, $0.941 = 0.8 = 0.641 = 0.5$
By using Simpson's $\frac{1}{3}$ sule.
 $\int_{0}^{1} f(x) dx = \frac{h}{3} [y_{0} + y_{1}) + 4(y_{1} + y_{3}) + 2(y_{2})$
 $\int_{0}^{1} \frac{1}{1+z^{2}} dx = \frac{0.25}{3} [[1+0.5] + 4(0.9412+0.641)]$
 $+ 2(0.8)]$
 $= 0.083 [I.5] + 4(I.582) + 2(0.8)$
 $= -0.1245 + 6.3248 + 1.6]$

0.083 (9.428) 344 5,7858 vo 9 vr Evaluat 1 x

simpson's 3 rule: $\int -f(x) dx = \frac{3}{3}h \left[(y_0 + y_n) + 3 (y_1 + y_2 + y_4 + y_5 + \dots + y_n) \right]$ +2 (33+30+39+ - --) where h= b-a O Evaluate Straz de thy Sampson's 3+R Tyle sol: - Geven Sitzz da a=0, b=6, f(x)=1+x+, n=6 where $h = \frac{b-q}{n} = \frac{6-0}{6} = \frac{6}{6} = 1$ x 0 1 2 3 4 5 6 y=f(x 1 0.5 0.2 0.1 0.058 0.038 0.0 27 By asing simpson's zoule $\int \frac{1}{1+x^2} dx = \frac{3(1)}{8} \left[1+0.027 \right] + 3(0.5+0.27)$ 0.058 t0.038] + 2[0.1] = 0.375 [1. 027+2.388 +0.2] = 1.355

 $\begin{aligned} & \text{Taylor's} \quad \text{Series:-} \\ & y(x) = y(x_0) + \frac{(x - x_0)}{1!} \quad y'(x_0) + \frac{(x - x_0)^2}{2!} \\ & y''(x_0) + \frac{(x - x_0)^3}{3!} \quad y'''(x_0) + \ldots \end{aligned}$ O Evaluate use taylor's series method to find y at & = 10.1, 10.2, 0.3 Considering -lerms upto the third degree given dy = x2+ y2 and ig(o)=1 7 - 5 + 5 - 5 Sol: given $\frac{dy}{dx} = x^2 + y^2$ and y(w) = 1 $\frac{dy}{dx} = x^2 + y^2$ and y(w) = 1 $\frac{dy}{dx} = \frac{1}{2} + \frac{1$ By asing Taylor's "Series" =>g(x) = g(o)t : 2-0 g'(o)t (x-0)2 g'(o)t (x-0)3 y m(6) + x + x + 1 + (x)

= y(0) + x y'(0) + x y'(0) + x 3 y''(0) det $y' = x^2 + y^2$ y'(0) = x + y = $= (0)^2 + (1)^2$ a change y" = 2x + 2y.y' brile st g(0) = 2(x0)+24040 (mas upto = 2(0)+2(1)(1) = 0+2=2 $y^{11} = 2+2[y,y''+y^2]$ (10) · uvit vu! = 2+2[yoy"+ yo2] onize par =) 2+2[1(2)+(W?)]=) (ar) (= (r) (ra) => 2+2[2+1] = J 2+2[3]=)"""; (ak-1); =) 2+6 =8 y(x) = y(0) + x y'(0) + 2 y''(0) + 33 y'' $y(x) = 1 + x + x^2 + \frac{4ix^3}{3} = \frac{(0 - 8)}{1 + 3} = 0$

When \$\$= 0.19 0.2,0.3 x= 0,1 in substitute egn O y(0.1) = 1+0.1+ (0.1)² + 4(0.1)³ Es. 1 (0) = 1.11013 (0) 12 × 1 (0) 13 (0) 1 y (0.2)= 1+0.2 + (0.2)2+ 4(0.2)3 $y(0.3) = 1+0.3+(0.3)^2+\frac{4(0.3)^3}{3}$ = 1.426 2) using taylor's serves method find the "pproximate value at x=0.2 for the ordinary differential equation at y'- 2y= 3ex , g(0)=0 18.= (9)= 18 -Sol: - Gluen $y' - 2y = 3e^{\chi}$, y(o') = 0 $y' = 3e^{\chi} + 2y$ $f(x_0) = y_0$ dy = 329+24 x0=0 Jo=0 M 0.01 0-003 = 0.012 = 0.0004

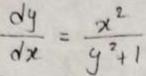
By using toyboi's series: method. y(x) = y (x.)+ (x.x.) y'(x.) + (x.x.) y'(x.) y (1)= y (0) + x y' (0) + 2 y"(0) + 23 76.071 = (1.0% y" (0)+ . 1022 · = == Take y'= 3e 2+24 y'(0) = 3e 7+2(y0) + 6 0 + 1 + (8.0) 5 $= 3e^{2} + 2(0)$ = $3e^{2} = 3^{-1}$ y" = 3 e + 2 % = 3+2(3)=9 y"(0) = 3 - 2 y" = 3 + 2(9) = 21y"" = 3et+ 2y" + 15 - 13 main - 1.06 = 3 + 2(21)= 3 + 42= 450 %. N - 0% 1000 . . Clare 1 200-0

 $y(x) = 0 + \frac{x}{3} + \frac{x^2}{3} + \frac{x^3}{6} + \frac{x^4}{34} + \frac{x^4}{34}$ y(0.2) + 3(0.2) + (0.2) x 9 + (0.2) n(21) + $= 0.6 + \frac{9(0.04)}{2} + \frac{9(0.006)}{6} + \frac{45(0.006)}{24}$ = 0.6+0.18+0.028+0.003+ y(n) = yo+ [+(x,yn-1) dx [0. 20] - [0-12] +1 . [1] (1) y'= y-x2 and y(0)=1 do upto 4th approximations and find the value of ylo.1) and ylo.2) by Picard's in method. Sol Given y'= y= 22= + (xy), -+ (xo)= yo xin (8, 20 = 0 1 : 30 = 1 + + +

By using picard's method $\mathfrak{g}(x) =$ - y(n) = yot) + (x,yn) dx put n=1", 1+(10) + (20)E. + (200)E $y(1) = 1 + \int f(x) \int f(x) \int dx (x) dx$ (1) == 1+ [] [] (x, yp) dx = 1+ f-f(x,1) dx 0100. = $IT \int (I + x^2) dx$ $= 1 + [2]^{2} - \left[\frac{23}{3}\right]^{2} \cdot (a)_{1}^{2}$ $\times b \left(\frac{1}{3}\right)^{2} \cdot (b) \left(\frac{2}{3}\right)^{2} \cdot (a)_{1}^{2}$ y(1) = 1+ [x-0] - [3 -0] $g_{1}^{(1)}$ $g_{1}^{(1)}$ Put n'= 2012 di la olp bas (1.0) p y(2) = 1+ [f(x,y2-1) dx . hadtun is well = it fift, you's dxisi's los = $1+^{2} \left[-f\left(x, 1+x-\frac{x^{3}}{3}\right) dx \right]$

 $y^{(2)} = 1 + \int (1 + \chi - \frac{\chi^3}{3} - \chi^2) dx$ = $1 + [x]_{0}^{x} + [\frac{\alpha^{2}}{2}]_{0}^{x} - \frac{1}{3}[\frac{\alpha^{4}}{4}]_{0}^{4}$ [$x^{3}7^{x}$ $\left[\frac{x^3}{3}\right]_{\partial}^{\pi}$ $= 1 + [x - 0] + [\frac{x^2}{2} - 0] + \frac{1}{3} [\frac{x^4}{4} - 0] - [\frac{x^3}{3} - 0]$ $g^2 = 1 + \chi + \frac{\chi^2}{2} - \frac{\chi q}{12} - \frac{\chi 3}{3}$ Put n= 3 x x x x x x x 1 1 : (") $y^{3} = 1 + [f(x, y^{3-1}) dx]$ = $1 + [f(x, y^{2-1}) dx]$ = $1 + [f(x, y^{2})] dx$ $= i + \left(f \left(x, 1 + x + x^{2} - \frac{x^{4}}{12} \right) \right)$ $= i + \left(f \left(x, 1 + x + x^{2} - \frac{x^{4}}{12} \right) \right)$ $= i + \left(f \left(x, 1 + x + x^{2} - \frac{x^{4}}{12} \right) \right)$ $= i + \left(f \left(x, 1 + x + x^{2} - \frac{x^{4}}{12} \right) \right)$ $y^{(3)} = 1t \int 1+\chi + \frac{\chi^2}{2} - \frac{\chi^4}{12} - \frac{\chi^3}{3} - \chi^2 \int$ $y(3) = [+ [x]_{0}^{\chi} + [\frac{x^{2}}{2}]_{0}^{\chi} + \frac{1}{2} [\frac{x^{3}}{3}]_{0}^{\chi} + \frac{1}{2} [\frac{x$

Put n=4 y (u) = 1+ " f + (x, y u-1) dx = 1+] + (x, y3) dx $= 1t^{2} \int \int \left(x, 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} - \frac{x^{5}}{60} \right)$ $\frac{\alpha}{12}$ $-\frac{\alpha^3}{2}$) $y^{(4)} = 1 + \int 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^5}{60} + \frac{x^7}{12} + \frac{x^3}{3} + \frac{x^5}{3} + \frac{$ $= 1 + \left[x \right]_{0}^{\chi} + \left[\frac{\chi^{2}}{2} \right]_{0}^{\chi} + \frac{1}{2} \left[\frac{\chi^{3}}{3} \right]_{0}^{\chi} + \frac{1}{6} \left[\frac{\chi^{4}}{4} \right]_{0}^{\chi} - \frac{1}{60} \left[\frac{\chi^{6}}{6} \right]_{0}^{\chi}$ $= \frac{1}{12} \left[\frac{x^{3}}{5} \right] - \frac{1}{3} \left[\frac{x^{4}}{4} \right] - \left[\frac{x^{3}}{3} \right]^{x}$ $y(u) = 1 + \chi + \frac{\chi^2}{2} + \frac{\chi^3}{612} + \frac{\chi^4}{24} - \frac{\chi b}{360} - \frac{\chi 5}{60} - \frac{\chi^4}{12}$ SX - E 23 K SX + KH (+1 = (8) H $y^{(q)} = 1 + (0:1) + (0:1)^{2} + (0:1)^$


$= 1.1 + 0.005 + \frac{0.000}{6} + \frac{0.000}{34} - \frac{0.0000}{360}$
$-\frac{0.00001}{60}-\frac{0.0001}{12}-\frac{0.001}{3}$
= 1+011-0.005-0.00016-0.000041-
0.000000837 - 0.00000016 - 0.0000083 - 0.00033 = 1 + 0.1 + 0.0055
$g^{(u)} = 1 + x + \frac{x^2}{2} + \frac{x^3}{642} + \frac{x^4}{24} - \frac{x^6}{360} - \frac{x^5}{60} - \frac{x^5}{60}$
$\frac{\chi'}{12} - \frac{\chi^3}{3}$ $y^{(4)} = 1 + 0.2t \frac{(0.2)^2}{2} + \frac{(0.3)^3}{5} + \frac{(0.3)^4}{34} - \frac{(0.3)^4}{34}$

(0.2)	(0.2)	(0,2)	(0,2)
360	60 -	12	3

= [+0.2+0.02 + 0.001 - 0.00006-0.0000001 - 0.000005 - 0.0001-0.002 = 1.216

£

Gluen the differential equation

 $y^{(1)} = 1 + \int f(x, y^{(1+1)}) dx$

y=1+ x + (x, y) dx

= 1+ 2 22 0 02

 $\frac{dy}{dz} = \frac{x^2}{y^2 + 1} = y^{10}$

Jo=0 2,=0

with the initial condition y=0 When x:0. use picard's method to obtain Y-for x=0.25, 0.5 and 1.0 correct to three decimal places.

1-15 + 15 + 1

+0.2+

(11 12

Euler & and the alt we walked The cales's method If the different for $(\underline{v}, w) = \frac{e^{i\alpha}}{a_{i}} + \frac{e^{i\alpha}}{a_{i}}$ silves to so and g. Je Argxisz, Aroxisz - them, while ground solation is given by (alean) bed rate = state (all rol autole bant me trates parted ! of the second sites the main 12.0 - 2 (4) 2.0 - 1 (3) - 2.2 C Listics the dailed all. · 1(20) = 30 = 2 j(1) = 2 2 = e 1 4 = e 2 * tions - Ares - 18 2.1 = 1 void itens gabe ausang aben length hisor by using calors mothed put no

Euler's method :-In culer's method if the differential equation is $\frac{dy}{dx} = f(x,y)$ Where z= xo and y= yo $\chi_1 = \chi_0 + h$, $\chi_2 = \chi_1 + h$ then, the general solution is given by $y_{n+1} = y_n + h + f(x_n, y_n)$

1, using Eylet's method Solve for y(2) from dy = 3x2+1, y(1)=2 Taking step Size. (i) h = 0.5 (ii) h = 0.25

Sol: Given dy = 3x2+1

x = 1 , y = 2

 $\mathcal{X}_1 = \mathcal{X}_0 th = 1 + 0.5$

7, = 1.5

To find y(2) by using step length hears by using Euler's method put n=0

Jo+1 = Jo+h + (xo, yo) =) $g_{1} = 2 + 0.5 + (i,2)$ $y_1 = 2 + 0.5 (30)^2 + 1)$ y" = 2+0.5(4) y(1.5) = 4To find y(2) by using step $det x_2 = x_1 + h$ dengeth h=0.5= 1.5+0.5280+9 = Ji+1 = y, +h f (x, y, j) (1) Y(2) = Y, + 0.5, + (3(2)+1)) = d(2) = 4+0.5 (1.5,4) $y(2) = (4 + (0.5)(3(1.5)^2 + 1))$ ra C= 4+(0.5)(7.75) (180.18) (180.18) (11.43.875) = 7.875(11.43.875) = 7.875(11.43.875) = 7.875

f(xo) = go (f(1) = 2 ; 10) = 100 Xo=1 . 40 = 2 x, = xoth = 1+0.25 = 1.25 by using Eater's muthod put n=0 Yot1 = Yoth + (20, yo) y = 2+0.25-+(1,2) - (5); = 270.25 (3(2) 71) y, = 2+ 0.25 (342+1) . . W. = 2+0.25 (4) ... = 3 = 3 using step dugth. = 3 = 3 = 3 = 3 $= 1.25 \pm 0.25$ $= 1.25 \pm 0.25$

by using Euler's method (put), min 1 $y_{1+1} = y_1 + h + (x_1, y_1) \cdot (x_1)$ $y_2 = y_1 + h + (x_1, y_1)$ $y_2 = 3 + 0.25 (3(x)^2 + 1)$ $y_2 = 3 + 0.25 (3(1.25)^2 + 1)$ = 3 + 0.25 (5.687) = 4.421

To find y(2) x3=x2+h = 1.5+0.25=1.75 by using eyles's method put, n= 2 y3 = Jath + (x2, y2) y3 = 4.42+0.25 (1.5, 4.42) y3=4.42+0.25 (3(1.5)+1) = 4.42+0.25 (7.75) = 4.42+1.9375= 6.357 $x_4 = x_3 th = 1075 t 0.0251 = 13$ = 2(1.75) 6.357 = 15 94 = y3+h+(x32, y3)0+1 = 13 = 6.357+0.25 (3822+1) $= 6.357 + 0.25(3(1.75)^{2} + 1.)$ = 6.357 + 6.25 (10.1875)= 6.357 + 2.5468 = 8.90A, TO Solve dy = x+y with y(0) ='); then find y(0.2) using moethod by talding step size h= 0.1

(1) bar), dy = 2+4 h = 0.121= 20th = 0+0.1. 33 (1+(2+1)8) 17.8.4 (8(1+5) +1) put n=0) 22.0+c1.1= Jo+1 = Joth + (xo, yo) y, = 170.1 + (0,1) itex = 15 y, = 1+0.1 (0+1) y1= 1+0.18(1)= x)+ + + = = = +6 y = (1+0+) 25.0++28.0 = 4047 -1181. 22.0 + F28.0 : 22 = 2,7 hi 2000 ++28.0 -= 0.1+0.1+20.2 -20.0 = gut n=1 $y_{i+1=y_i+hf(x_{i,y_i})$

tations are also he land

Rungey: Kutto, method, 1.1) Tx, f(x &), 1+ with (1. 26x0) = yo given then to find you you'd to use the following Runge & loke atta ?? method. Brange ve Katta 3200-1100/946 (Second, onder): grind you to be listing ke piler's me third where given = byf (26, 40) Runge - Kutta method (Fourth order) = Y1= y0+ to (2k1+2k2+2k3+k4) where kizbf(xo, yo) ke= other (tothe, yoth) xk3 x + (20+f-he)=0.2 k2) putka=ohf (xoth 1 yo+t3). O dy - y + xy, y to) = 2 (find y 10. D. y 10.2) and y(0, 3) = by' + higher (-1, 6) (3(2)+1)(2) If y' = x + y = w + (-1, 6) (3(2)+1) then find yco. 1), using runger + kulla method.

and let fixed + + + 9799 - 1 y(xo)= yo y (b)=1 xo=0 yo=1 h=x-xo=0.1-0=0, Using Runge-kutta method Y1= y0+ f(k1+2k2+2k3+ku) →0 $k_1 = hf(x_0, y_0)$ $k_2 = hf(x_0, \frac{h}{a}, \frac{y_0}{b_1})$ = 0.1 ()(0+ yo) (100) $k(x_0 + \frac{h}{2} + y_0 + \frac{h}{2})$ =0.2 (0+12. -) $=0.1(0+\frac{0.1}{2}+1)+\frac{0.1}{2})$ = 0.1(1) $=0.1(\frac{0.1+2+0.1}{2})$ $k_1 = 0.1$ k3 = hf (x0+ + 1 40+ k2) 1 ... =0.1\$ (x0+3 + y0+ k2) 8r+1 = 1 = 6:1 0+ 0.1+ 1:4 : 0.14) (=.0) 1 1.10 = 21 oit + 6 + 6 . Million give 291 ($=0.1\left(\frac{0.1}{3}+1+\frac{0.11}{2}\right)$ griss, (1.0)?

1. 2 0.1 (0.2 +6+0.33) =0.1(1.0883) = 0.10883and the second $ku = hf(xo+h, yo+k_3)$ = 0.1 (X0 + h + 90 + k3)= 0.1(0+0.1+1+0.108)-= 0.1(1.208) t' bus p メビーンにか 上記 二十日 モールゼ =, 0 · 1208 Substitute kirkziks, ku in egn D $y_1 = 1 + \frac{1}{6} (0.1 + 2(0.11) + 2(0.108) + 0.1208$ $y_1 = 1 + \frac{1}{6} \left(0.1 + 0.22 + 0.216 + 0.1208 \right)$ $: 1 + \frac{1}{6} (-0.6568) = -$ = (1 + 0.6568)= (1 + 0.0 + 16) 1.23 < 1+0;1994 . = 1.1094

(3) Apply R.K. method of and order to Solve initial value problem dy = 2+y ycon= 1, find at yco.a) taking heal Boin let forig) = Right in the YCros = yo X0=0 y0=1 : b=0.1 using R.K. Method of and order 31= yo + 2 (ki+k2). where $k_1 = hf(x_0, y_0)$. = 0.1 f (0,1). =0.1(0+1) $k_{1,20}$

Ke = hf (xoth, yoth) = 0.1 F (0+0.1, 1+0.D . = 0.1 \$ (0.1, 1.1) = 0.1 (0.1 + 10.1) -0.12 By using R.K mathod · 비· 나 (0·1+0·12) s = 1.11 (C. 1.) A for a local $X_1 = X_0 + b$ the state out out of the $k_{1} = 0.1 f(x_{0.1}y_{1})$ = 6 · i f (0· i, i· ii) = 112 = 112 = 0.1 (0.1+1.11) 2000 L'AND Lune ato na fot l'est sont und k2 = Q.1.f(x1+h, y)+k1) , me 2011 f. (. 0:1+0:1.1. @ 1:11+0:121) BONE Opt (09: 200 19231) DE (000) = 0.14/3/12 ration 2 soliton englysis Li

Salat Sign た: 之 (ki+ke) = -2 (0.121+0.1431) - 0 - 13 205 42 = 40+k - 1.242 XezXr+h = 0.1+0.1 11.1 ... **ひ**、急、 Melne's predictor and corrector method MPIne's predicter formulat $y_{n+1} = y_{n-3} + \frac{y_{n}}{3} \left[2y_{n-2} - y_{n-1}' + 2y_{n}' \right]$ Milne's correcter fermula Yn+1 = Yn-1 + + + [Yn-1 + 44/2 + yn+1] I given that dy = 2-y2 and the data yconzo, yco.2) =0.02, yco.40.2 0.07951 Y(0.6) = 0.1762 : compile y at X=0.8 by applying milne's method. in =

est we prepare the following the 70:02 4 = 1 - 5 8 30:0 30-3-0-3:0 91:000 9. : 00.(00) X2= O V 19-0-0715 0 1995 2 = 0 0 - (0 EE)= 73=06 42:0.1762 : 0 3-3-7 xu = 0-8 44= ? = 0=== use have the predicta formula is Put n=3 : h=0/3 x1-x0=02-0=02 $y_{\underline{1}} = y_{\underline{1}} + \frac{\lambda}{3} \left[\frac{y_{\underline{2}}}{2} - \frac{y_{\underline{3}}}{3} - \frac{y_{\underline{3}}}{3} \right]$ $y_{3+1}: y_{3-3} + \frac{uh}{3} \left[2y_{3-3} - y_{3-1} + 2y_3 \right]$ $y_4 = y_0 + \frac{uh}{3} [2y] - y_2 + 2y_3]$ $= 0 + \frac{u(0-3)}{3} \left[2(0.1996) - 0.1927 \right]$ +2(6.05689)=0+0.266 0.3999-0.1997+1.1378] = 0+0.266[1:3443] = 0.3575

yu'= x-y2

 $= 0.8 - (0.3575)^2$

= 0.8 - 0.12780 = 0.6722 Next- we have coorrector formula $y_{3+1} = y_{3-1} + \frac{0-2}{3} \left[y_{3-1} + 4y_{3+1} + y_{3+1} \right]$ $y_{4} = y_{2} + \frac{0 - 2}{3} \left[y_{2} + y_{3} + y_{4} \right] =$ = 0.0795+0.0666 [0.3937+4(0.5689) + 0.6722) = 0:0795 + 0.0666 [3.34)5]

=0.0795+0.2225

= 0.3020

 $y_{u} = \chi_{u} - y_{u}^{2}$

= 0.8 - (0-3020)

= 0.8 - 0.0912 41 = 0.7088 //

substituting the value of y'll again in correcter formula y(1) = 0.0795 + 0.0666 [0.3937 + 4[0.5689)+0.7088 = 63646 =0.0795+0.0666 [3.378]] y (0.8) 0. 3044. 0-3 046